Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.

Identifieur interne : 000134 ( Main/Exploration ); précédent : 000133; suivant : 000135

Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.

Auteurs : Federica Spina [Italie] ; Valeria Tigini [Italie] ; Alice Romagnolo [Italie] ; Giovanna Cristina Varese [Italie]

Source :

RBID : pubmed:29973501

Abstract

Autochthonous fungi from contaminated wastewater are potential successful agents bioremediation thanks to their adaptation to pollutant toxicity and to competition with other microorganisms present in wastewater treatment plant. Biological treatment by means of selected fungal strains could be a potential tool to integrate the leachate depuration process, thanks to their fungal extracellular enzymes with non-selective catalytical activity. In the present work, the treatability of two real samples (a crude landfill leachate and the effluent coming from a traditional wastewater treatment plant) was investigated in decolorization experiments with fungal biomasses. Five autochthonous fungi, Penicillium brevicompactum MUT 793, Pseudallescheria boydii MUT 721, P. boydii MUT 1269, Phanerochaete sanguinea MUT 1284, and Flammulina velutipes MUT 1275, were selected in a previous miniaturized decolorization screening. Their effectiveness in terms of decolorization, enzymatic activity (laccases and peroxidases), biomass growth and ecotoxicity removal was compared with that of five allochthonous fungal strains, Pleurotus ostreatus MUT 2976, Porostereum spadiceum MUT 1585, Trametespubescens MUT 2400, Bjerkanderaadusta MUT 3060 and B. adusta MUT 2295, selected for their well known capability to degrade recalcitrant pollutants. Moreover, the effect of biomass immobilization on polyurethane foam (PUF) cube was assessed. The best decolorization (60%) was achieved by P. spadiceum MUT 1585, P. boydii MUT 721 and MUT 1269. In the first case, the DP was achieved gradually, suggesting a biodegradation process with the involvement of peroxidases. On the contrary, the two autochthonous fungi seem to bioremediate the effluent mainly by biosorption, with the abatement of the toxicity (up to 100%). The biomass immobilization enhanced enzymatic activity, but not the DP. Moreover, it limited the biomass growth for the fast growing fungi, MUT 721 and MUT 1269. In conclusion, robust and versatile strains coming from well-characterized collections of microorganisms can obtain excellent results comparing and even exceeding the bioremediation yields of strains already adapted to pollutants.

DOI: 10.3390/life8030027
PubMed: 29973501
PubMed Central: PMC6161071


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.</title>
<author>
<name sortKey="Spina, Federica" sort="Spina, Federica" uniqKey="Spina F" first="Federica" last="Spina">Federica Spina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. federica.spina@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tigini, Valeria" sort="Tigini, Valeria" uniqKey="Tigini V" first="Valeria" last="Tigini">Valeria Tigini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. valeria.tigini@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Romagnolo, Alice" sort="Romagnolo, Alice" uniqKey="Romagnolo A" first="Alice" last="Romagnolo">Alice Romagnolo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. alice.romagnolo@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Varese, Giovanna Cristina" sort="Varese, Giovanna Cristina" uniqKey="Varese G" first="Giovanna Cristina" last="Varese">Giovanna Cristina Varese</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. cristina.varese@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29973501</idno>
<idno type="pmid">29973501</idno>
<idno type="doi">10.3390/life8030027</idno>
<idno type="pmc">PMC6161071</idno>
<idno type="wicri:Area/Main/Corpus">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000111</idno>
<idno type="wicri:Area/Main/Curation">000111</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000111</idno>
<idno type="wicri:Area/Main/Exploration">000111</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.</title>
<author>
<name sortKey="Spina, Federica" sort="Spina, Federica" uniqKey="Spina F" first="Federica" last="Spina">Federica Spina</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. federica.spina@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tigini, Valeria" sort="Tigini, Valeria" uniqKey="Tigini V" first="Valeria" last="Tigini">Valeria Tigini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. valeria.tigini@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Romagnolo, Alice" sort="Romagnolo, Alice" uniqKey="Romagnolo A" first="Alice" last="Romagnolo">Alice Romagnolo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. alice.romagnolo@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Varese, Giovanna Cristina" sort="Varese, Giovanna Cristina" uniqKey="Varese G" first="Giovanna Cristina" last="Varese">Giovanna Cristina Varese</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. cristina.varese@unito.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin</wicri:regionArea>
<placeName>
<settlement type="city">Turin</settlement>
<region type="région" nuts="2">Piémont</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Life (Basel, Switzerland)</title>
<idno type="ISSN">2075-1729</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autochthonous fungi from contaminated wastewater are potential successful agents bioremediation thanks to their adaptation to pollutant toxicity and to competition with other microorganisms present in wastewater treatment plant. Biological treatment by means of selected fungal strains could be a potential tool to integrate the leachate depuration process, thanks to their fungal extracellular enzymes with non-selective catalytical activity. In the present work, the treatability of two real samples (a crude landfill leachate and the effluent coming from a traditional wastewater treatment plant) was investigated in decolorization experiments with fungal biomasses. Five autochthonous fungi,
<i>Penicillium brevicompactum</i>
MUT 793,
<i>Pseudallescheria boydii</i>
MUT 721,
<i>P. boydii</i>
MUT 1269,
<i>Phanerochaete sanguinea</i>
MUT 1284, and
<i>Flammulina velutipes</i>
MUT 1275, were selected in a previous miniaturized decolorization screening. Their effectiveness in terms of decolorization, enzymatic activity (laccases and peroxidases), biomass growth and ecotoxicity removal was compared with that of five allochthonous fungal strains,
<i>Pleurotus ostreatus</i>
MUT 2976,
<i>Porostereum spadiceum</i>
MUT 1585,
<i>Trametes</i>
<i>pubescens</i>
MUT 2400,
<i>Bjerkandera</i>
<i>adusta</i>
MUT 3060 and
<i>B. adusta</i>
MUT 2295, selected for their well known capability to degrade recalcitrant pollutants. Moreover, the effect of biomass immobilization on polyurethane foam (PUF) cube was assessed. The best decolorization (60%) was achieved by
<i>P. spadiceum</i>
MUT 1585,
<i>P. boydii</i>
MUT 721 and MUT 1269. In the first case, the DP was achieved gradually, suggesting a biodegradation process with the involvement of peroxidases. On the contrary, the two autochthonous fungi seem to bioremediate the effluent mainly by biosorption, with the abatement of the toxicity (up to 100%). The biomass immobilization enhanced enzymatic activity, but not the DP. Moreover, it limited the biomass growth for the fast growing fungi, MUT 721 and MUT 1269. In conclusion, robust and versatile strains coming from well-characterized collections of microorganisms can obtain excellent results comparing and even exceeding the bioremediation yields of strains already adapted to pollutants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29973501</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2075-1729</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jul</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Life (Basel, Switzerland)</Title>
<ISOAbbreviation>Life (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E27</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/life8030027</ELocationID>
<Abstract>
<AbstractText>Autochthonous fungi from contaminated wastewater are potential successful agents bioremediation thanks to their adaptation to pollutant toxicity and to competition with other microorganisms present in wastewater treatment plant. Biological treatment by means of selected fungal strains could be a potential tool to integrate the leachate depuration process, thanks to their fungal extracellular enzymes with non-selective catalytical activity. In the present work, the treatability of two real samples (a crude landfill leachate and the effluent coming from a traditional wastewater treatment plant) was investigated in decolorization experiments with fungal biomasses. Five autochthonous fungi,
<i>Penicillium brevicompactum</i>
MUT 793,
<i>Pseudallescheria boydii</i>
MUT 721,
<i>P. boydii</i>
MUT 1269,
<i>Phanerochaete sanguinea</i>
MUT 1284, and
<i>Flammulina velutipes</i>
MUT 1275, were selected in a previous miniaturized decolorization screening. Their effectiveness in terms of decolorization, enzymatic activity (laccases and peroxidases), biomass growth and ecotoxicity removal was compared with that of five allochthonous fungal strains,
<i>Pleurotus ostreatus</i>
MUT 2976,
<i>Porostereum spadiceum</i>
MUT 1585,
<i>Trametes</i>
<i>pubescens</i>
MUT 2400,
<i>Bjerkandera</i>
<i>adusta</i>
MUT 3060 and
<i>B. adusta</i>
MUT 2295, selected for their well known capability to degrade recalcitrant pollutants. Moreover, the effect of biomass immobilization on polyurethane foam (PUF) cube was assessed. The best decolorization (60%) was achieved by
<i>P. spadiceum</i>
MUT 1585,
<i>P. boydii</i>
MUT 721 and MUT 1269. In the first case, the DP was achieved gradually, suggesting a biodegradation process with the involvement of peroxidases. On the contrary, the two autochthonous fungi seem to bioremediate the effluent mainly by biosorption, with the abatement of the toxicity (up to 100%). The biomass immobilization enhanced enzymatic activity, but not the DP. Moreover, it limited the biomass growth for the fast growing fungi, MUT 721 and MUT 1269. In conclusion, robust and versatile strains coming from well-characterized collections of microorganisms can obtain excellent results comparing and even exceeding the bioremediation yields of strains already adapted to pollutants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Spina</LastName>
<ForeName>Federica</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. federica.spina@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tigini</LastName>
<ForeName>Valeria</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. valeria.tigini@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Romagnolo</LastName>
<ForeName>Alice</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. alice.romagnolo@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Varese</LastName>
<ForeName>Giovanna Cristina</ForeName>
<Initials>GC</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli, 25, 10125 Turin, Italy. cristina.varese@unito.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Life (Basel)</MedlineTA>
<NlmUniqueID>101580444</NlmUniqueID>
<ISSNLinking>2075-1729</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">autochthonous fungi</Keyword>
<Keyword MajorTopicYN="N">biodegradation</Keyword>
<Keyword MajorTopicYN="N">detoxification</Keyword>
<Keyword MajorTopicYN="N">leachate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29973501</ArticleId>
<ArticleId IdType="pii">life8030027</ArticleId>
<ArticleId IdType="doi">10.3390/life8030027</ArticleId>
<ArticleId IdType="pmc">PMC6161071</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1988 Sep 15;254(3):877-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3196301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2003 Dec;22(1-2):161-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Waste Manag. 2014 Apr;34(4):798-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24462339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 2018 Feb;183(1):185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28929280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Technol. 2017 Oct;38(19):2447-2455</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Int. 2009 Jan;35(1):127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18617266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2014 Oct;4(20):3901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2010 Nov;12(11):2032-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20848046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2010 Mar;30(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20099998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015;189:121-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2012 Feb 29;205-206:208-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2017 Aug;238:48-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28432949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Medicine (Baltimore). 2017 Nov;96(47):e8423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29381919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 May;101(9):3067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20071167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2011 Feb;82(7):1017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Technol. 2012 Dec;33(22-24):2575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2018 Jun 15;627:835-843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29426208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Environ Res Public Health. 2009 Apr;6(4):1393-417</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19440525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health B Crit Rev. 2009 Jan;12(1):83-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19117211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2015 Dec;140:119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25454204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Aug;141:29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23499176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMB Express. 2014 Aug 30;4:60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25401065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2017 Oct;241:1067-1076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28651323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2008 Feb 11;150(3):468-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2014 Jul 15;487:335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Feb;76(4):1301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2012 Oct 1;435-436:402-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22878100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2016 Dec;164:469-479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27614039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2018 Jan;102(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29038974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Nov;123:106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22940306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell Fact. 2009 Jan 12;8:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19138404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2008 May 1;153(1-2):834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17961917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(9):958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26061209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMB Express. 2017 Sep 12;7(1):171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28900905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Piémont</li>
</region>
<settlement>
<li>Turin</li>
</settlement>
</list>
<tree>
<country name="Italie">
<region name="Piémont">
<name sortKey="Spina, Federica" sort="Spina, Federica" uniqKey="Spina F" first="Federica" last="Spina">Federica Spina</name>
</region>
<name sortKey="Romagnolo, Alice" sort="Romagnolo, Alice" uniqKey="Romagnolo A" first="Alice" last="Romagnolo">Alice Romagnolo</name>
<name sortKey="Tigini, Valeria" sort="Tigini, Valeria" uniqKey="Tigini V" first="Valeria" last="Tigini">Valeria Tigini</name>
<name sortKey="Varese, Giovanna Cristina" sort="Varese, Giovanna Cristina" uniqKey="Varese G" first="Giovanna Cristina" last="Varese">Giovanna Cristina Varese</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000134 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000134 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29973501
   |texte=   Bioremediation of Landfill Leachate with Fungi: Autochthonous vs. Allochthonous Strains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29973501" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020